Передача мощности на гребной винт

По способу передачи мощности от двигателя к гребному винту энергетические установки можно разделить на три основные группы:

1.установки с непосредственным (прямым) соединением главного двигателя с гребным винтом фиксированного или регулируемого шага;

2.установки с зубчатой редук-торной передачей;

3.установки с электрической передачей.

На рис. представлены одно-вальные схемы указанных передач.

Прямая передача (рис. а). Главный двигатель 1 с помощью валопровода 2 жестко соединен с гребным винтом 3. В прямой передаче потери в системе двигатель—гребной винт будут минимальными. Это наиболее простая и надежная установка.

Частота вращения главного двигателя обычно не превышает 300 об/мин, что объясняется стремлением повысить проиульснвный КПД гребного винта. Малая частота вращения главного двигателя объективно обусловливает надежность его работы, удобство эксплуатации, большой моторесурс и малый удельный расход топлива.

Наряду с этим применение на судне малооборотного двигателя приводит к некоторому увеличению высоты машинного отделения и массы энергетической установки, а также ухудшает маневренные свойства судна, если оно не имеет специальных подруливающих устройств.

Прямая передача получила широкое распространение в промысловом флоте.

Редукторная передача (рис. б). Чаще всего ее комплектуют из двух главных двигателей, которые связаны через эластичные муфты 4 и понижающую зубчатую передачу 5 с общим гребным валом.

Развитию дизель-редукторных установок способствовало появление мощных среднеоборотных четырехтактных дизелей, применение которых на судах имеет ряд преимуществ, в частности, позволяет производить отбор мощности на работу вспомогательных установок (механизмов) в рабочем (промысловом) режиме, а также снизить массу и габарит энергетических установок.

Частота вращения гребного винта, независимо от номинальных оборотов двигателя, при наличии редуктора может быть установлена с таким расчетом, чтобы обеспечить оптимальные условия работы движителя.

Выигрыш в КПД гребного винта частично компенсирует потери мощности в зубчатой передаче (5—б %). Дизель-редукторпая установка с двумя (или более) двигателями обладает повышенной живучестью и маневренностью по сравнению с прямой передачей. Кроме того, при работе на частичных нагрузках, связанных со значительным увеличением удельного расхода топлива, часть двигателей может быть выключена.

Остальные двигатели при этом продолжают работать с большей нагрузкой и при меньшем удельном расходе топлива. Вместе с тем редукторным передачам по сравнению с прямыми присущи и недостатки, к которым следует отнести конструктивное усложнение установки, ее более низкий КПД вследствие потерь в редукторе и муфтах, меньший моторесурс двигателей и больший удельный расход топлива. Дизель-редукторные передачи получили самое широкое распространение на транспортных рефрижераторах промыслового флота.

Электрическая передача (рис. в). Она состоит из гребного электродвигателя 8, электропроводииков 7 и генератора 6, жестко соединенного с главным двигателем. Дизель-генераторов, как правило, бывает несколько, от двух до шести. Из схемы видно, что происходит двойная трансформация энергии (механической в электрическую, а затем электрической в механическую), сопровождающаяся увеличением потерь в передаче и соответственным снижением ее КПД.

С другой стороны, отсутствие жесткой механической связи между первичным двигателем (дизелями) и гребным винтом, а также наличие нескольких главных дизель-генераторов дает ряд существенных преимуществ:

возможность применения при наличии винта фиксированного шага (ВФШ) нереверсивных дизелей, так как реверс осуществляется гребным электродвигателем;

высокие маневренные качества судна благодаря широкому диапазону частоты вращения гребного электродвигателя.

Предлагаемая информационная система АТП
Информационная система на транспорте- это, во-первых, совокупность процессов циркуляции и переработки информации и, во-вторых, описание этих процессов. Целью реализации информационной системы на транспорте является повышение эффективности транспортного процесса на базе использования современных ком ...

Расчет потребного количества перегрузочных комплексов
Количество перегрузочных комплексов определяется исходя из потребности в грузовых причалах с оборудованием, перегрузочными средствами, складами, наличием жд. путей. Nпр = Qм/30ПсутKметKзан, где Qм - расчетный груооборот; Псут - суточная пропускная способность одного причала, Kмет - коэфф. использов ...

Проверочный расчет валов
Проверочный расчет валов на прочность выполняют на совместное действие изгиба и кручения. При этом растет, отражает разновидности цикла напряжений изгиба и кручения, усталостные характеристики материалов, размеры, форму и состояние поверхности валов. Проверочный расчет производится после завершения ...