Термогазодинамический расчет основных параметров турбореактивного двигателя типа ТРДДсм на базе АИ-222-25 для учебно-боевого самолета

Проведен выбор основных параметров рабочего процесса ТРДД со смешением потоков. В результате термогазодинамического расчета определены основные параметры двигателя.

Сформирован облик ТРДД, получен уровень загрузки турбин.

Произведены газодинамические расчеты узлов двигателя: компрессора низкого давления, компрессора высокого давления, турбины высокого давления, турбины низкого давления. В результате получены энергетические, кинематические и геометрические параметры узлов и двигателя в целом.

Выполнено профилирование лопатки РК первой ступени компрессора высокого давления.

Техническое развитие авиационных двигателей в значительной степени предопределяет завоевание авиацией качественно новых показателей и областей применения. Таковы, например, революционные преобразования в авиационной технике, связанные с внедрением газотурбинных и реактивных двигателей, появления самолетов вертикального взлета и посадки и т. п. В то же время уже в сложившихся классах авиационных систем логика развития летательных аппаратов, изменение объективных требований к ним оказывают значительное встречное влияние на двигатели, определяют направления их совершенствования.

Совершенствование летательных аппаратов по пути увеличения скоростей и высот полёта, грузоподъёмности в значительной степени достигается за счёт увеличения основных показателей силовых установок, составной частью которых являются авиационное двигатели. К ним в первую очередь можно отнести мощность и тягу, обеспечиваемая одним или несколькими, совместно работающими двигателями, удельную массу, удельный расход топлива, габаритные размеры.

В зависимости от назначения ЛА и условий полета, при которых рассчитывается двигатель, выбираются параметры цикла и соответствующие им режимы работы на характеристиках. В основу оптимизации параметров закладываются разные критерии: минимум удельного расхода топлива, затрат топлива на I т·км и массы силовой установки; максимум мощности; обеспечение надежности на чрезвычайных режимах и т.п.

Даже краткий обзор факторов, формирующих облик двигателей на современном этапе развития авиации, показывает, что для выбора рациональной схемы и параметров силовой установки необходимо комплексный анализ её как тепловой машины (эффективный КПД цикла), как движителя (полетный и полный КПД), как механической конструкции (облика газогенератора, геометрическое и кинематическое согласование компрессоров и турбин, ограниченная сложность, малая масса), как источника вредного воздействия на окружающую среду и др. Этот анализ должен учитывать конкретное назначение и условие применения двигателя в системе силовой установки самолета.

Проведение подобного анализа в достаточном объеме невозможно без широкого использования ЭВМ, без разработки математических моделей двигателей и их элементов, без перехода в дальнейшем к методам оптимального автоматизированного проектирования на всех этапах разработки и создания двигателей.

Анализировать свойства и характеристики двигателей (в особенности перспективных) целесообразно при реальных сочетаниях их различных параметров, соответствующих определенному уровню газодинамического конструкторско-технологического совершенства элементов. Поэтому выбор параметров анализируемого двигателя должен быть ориентирован на определенное или предполагаемое время появление его в эксплуатации.

Турбореактивный двухконтурный двигатель со смешением потоков (ТРДДсм) с Рвзл = 26630 Н для учебно-боевого самолета.

Расчетный режим Н = 0 км и Мп = 0

Рекомендуемые параметры:

- m = 1.18 – степень двухконтурности;

- p*КI=15.6–степень повышения давления в компрессоре;

- p*КII=p*вІІ опт –степень повышения давления в вентиляторе, наружного контура;

- TГ*=1480 К –температура газа перед турбиной (по заторможенным

параметрам).

Прототипом проектируемого двигателя служит двигатель АИ-222-25.

Параметры прототипа:

- Рmax = 24500 Н

- Суд = 0,065 кг/Нч

- Gв = 49.4 кг/с

- p*КI=15.4

- p*КII=p*вІІ опт

- Т*Г = 1470 К

- m = 1.18

Условные обозначения

– удельный расход топлива, ;

– удельная теплоемкость, ;

– массовый расход, ;

– площадь проходного сечения, ;

– высота полета, ;

– низшая теплотворная способность топлива, ;

– удельное теплосодержание, ;

– показатель изоэнтропы;

– удельная работа, ;

– количество воздуха в килограммах, теоретически необходимое для

сжигания топлива, ;

– число Маха;

– степень двухконтурности;

– тяга двигателя,;

– удельная тяга двигателя, ;

– давление,;

– газодинамическая функция давления;

– относительный расход топлива;

– газовая постоянная, ;

– температура,;

– газодинамическая функция температуры;

– коэффициент избытка воздуха;

– коэффициент полезного действия (КПД);

– коэффициент полноты сгорания в камере сгорания;

– механический КПД;

– степень подогрева газа в камере сгорания;

– приведенная скорость;

– степень повышения полного давления в компрессоре;

– коэффициент восстановления полного давления;

– коэффициент скорости реактивного сопла;

– критическая скорость, ;

– скорость движения воздуха или газа, ;

– окружная скорость, ;

– диаметр, ;

– относительный диаметр втулки;

– высота лопатки, ;

– константы в уравнении расхода;

– плотность воздуха, ;

– степень понижения полного давления в турбине;

– число ступеней компрессора или турбины;

– коэффициент нагрузки ступени турбины.

Сокращения:

Н – невозмущенный поток перед двигателем, окружающая среда;

В – воздух; вентилятор и сечение перед ним;

Ввд – сечение на входе в компрессор высокого давления;

Вх – сечение на входе во входное устройство.

Вых – значение параметра на выходе из канала;

квII – сечение за вентилятором в наружном контуре;

квI – сечение за вентилятором во внутреннем контуре;

к – компрессор и сечение за ним;

кс – камера сгорания;

г – газ и сечение за камерой сгорания;

т – топливо, турбина и сечение за турбиной вентилятора;

твд – турбина высокого давления и сечение за ней;

см – параметры потока после смешения и сечение за камерой смешения;

I – внутренний контур;

II – наружный контур;

Кр – критические параметры;

С – сечение на срезе реактивного сопла;

– общее, суммарное значение параметра;

ГТД – газотурбинный двигатель;

ТРДДсм – турбореактивный двухконтурный двигатель со смешением потоков;

Квд – компрессор высокого давления;

Твд – турбина высокого давления;

ТВ – турбина вентилятора.

ТрЗС – трансзвуковая ступень;

СА – сопловой аппарат;

РК – рабочее колесо.

Определение числа остановочных пунктов и зонных станций
Остановочные пункты предназначены исключительно для посадки и высадки пригородных пассажиров. Путевого развития они не имеют. Для обслуживания пассажиров устраиваются пассажирские платформы с переходами, помещения для пассажиров и билетных касс. Среднее расстояние между остановочными пунктами опред ...

Определение натяжения несущего троса при беспровесном положении контактных проводов
Для полукомпенсированной цепной подвески температуру беспровесного положения контактных проводов t0 обычно принимают несколько ниже, чем среднее значение температуры в заданном районе на величину t’. Тогда t0 = – t’ (20) где t’ = 15 для одиночных контактных проводов сечением 85…100 мм2 (у нас по за ...

Расчет длительности цикла светофорного регулирования и его элементов
Определение длительности цикла и основных тактов регулирования основного на сопоставлении фактической интенсивности движения на подходах к перекрестку и пропускной способности (потокам насыщения) этих подходов. Поэтому эти параметры следует рассматривать в качестве основных исходных данных для расч ...